Similar Articles |
|
Chemistry World August 21, 2008 Fred Campbell |
Double bonding with silicon In a landmark for silicon chemistry, US researchers have reported the first stable silicon (0) compound to contain a silicon-silicon double bond. |
Chemistry World January 29, 2010 Phillip Broadwith |
Silicon goes aromatic Chemists in the UK have constructed a structural analogue of benzene made from silicon atoms. The molecule is not flat like benzene, but it reveals a new type of aromatic stabilisation. |
Chemistry World November 7, 2007 James Mitchell Crow |
Shortest Metal Bond Chemists in the US have made a quintuply-bonded dichromium complex with the shortest metal-metal bond ever isolated. |
Technology Research News March 9, 2005 |
Silicon Chip Laser Goes Continuous Useful lasers made from silicon would make it possible to move data between and within computer chips using light rather than electricity. This would make for faster chips that could be more tightly integrated with optical communications equipment. |
Chemistry World August 14, 2012 Andy Extance |
Carbon clusters score lucky seven US and Chinese chemists say that they've calculated the structure of a stable carbon dication that would have a higher coordination number than any yet seen experimentally. |
Chemistry World June 14, 2012 David Bradley |
Tripling up on boron bonds Carbon and nitrogen are well known for their triple bonds, but making stable compounds with a triple bond between two boron atoms hadn't been achieved despite the computational possibilities. Until now. |
Chemistry World March 5, 2007 Richard Van Noorden |
Desperately Seeking Silicon Silicon has been blamed for the faulty fuel that caused thousands of UK cars to break down last week. How can a silvery-gray semi-metal popularly known to be used in computer chips have found its way into gasoline? |
Chemistry World September 24, 2009 Phillip Broadwith |
Carbon can't but tin can US chemists have discovered that distannynes - tin-based analogues of acetylenes - can react reversibly with ethene to make cyclic complexes. |
Chemistry World August 8, 2008 Fred Campbell |
Uncovering uranium's unusual bonding Delving into the exotic world of f-block chemical bonding, US researchers have successfully isolated the first unsupported uranium-aluminum bond within an organometallic framework. |
Reactive Reports Issue 54 David Bradley |
Metals Take on Carbon's Bonding Characteristics A rethink about chemical bonding might be in the cards thanks to research that shows that the metal indium forms bonds in a manner not dissimilar to organic carbon atoms. |
Chemistry World April 20, 2015 Andy Extance |
Longer-lived oxides offer silicon synthesis boost Silicon and oxygen have been harnessed into previously unknown chemistry by US researchers, opening up a new 'world in a grain of sand'. |
Technology Research News October 20, 2004 |
Molecules positioned on silicon Dubbed multi-step feedback control lithography, this new fabrication process could eventually be used to construct prototype molecular electronic devices for future technologies in areas like consumer electronics and biomedical diagnostics. |
Technology Research News January 12, 2005 |
Silicon Surfaces Speed Circuits Researchers have devised a way to use the chemistry of silicon surfaces to make smaller chip features. |
Chemistry World April 14, 2009 Lewis Brindley |
Osmium and pyridine ring together Organic chemists in China have found a way to put osmium into a pyridine ring - leading to the synthesis of the first metallapyridinium complex. |
Chemistry World April 26, 2011 Manisha Lalloo |
Pnicogens link up as new bond is discovered German researchers have discovered a chemical oddity - a new type of intramolecular interaction between group 15 atoms, which is as strong as a hydrogen bond. These interactions could be used to build supramolecular structures. |
Chemistry World March 25, 2012 Phillip Broadwith |
Germanium-Oxygen Double Bond Takes Centre Stage The first compound with a germanium-oxygen double bond has been created by Japanese scientists. |
Chemistry World October 11, 2013 Andy Extance |
'Tetrel bonding' emerges from I -hole Researchers have coined the term 'tetrel bonding' to highlight little-studied but powerful non-covalent bonding between electron donors and the group 14 elements, silicon, germanium and tin. |
Technology Research News July 28, 2004 |
Chemistry yields DNA fossils The technique could be used to make nanoscale containers, wires, patterns, and chemical catalysts. |
Chemistry World June 5, 2006 Simon Hadlington |
The Attraction of Gold for Gold Researchers are unravelling some of the fundamental chemistry surrounding a key but poorly understood aspect of the coordination chemistry of gold -- the weak `aurophilic' interactions between adjacent atoms of Au(I) in organic complexes. |
Chemistry World September 19, 2010 Simon Hadlington |
One dimensional carbon chains get longer Researchers in Canada have synthesised the longest polyyne to date - a linear chain of carbon atoms. |
Chemistry World November 18, 2012 Simon Hadlington |
C-O bond stretched to record length Chemists in the US have stretched the C-O bond to a record length, an 'extraordinary' 1.622 angstroms, compared with a typical length of around 1.43 angstroms in ethers. |
Chemistry World July 16, 2009 Simon Hadlington |
Strange vibrations Researchers in Taiwan have shown that in a relatively simple molecular system the induced vibrations can inhibit the breaking of the bond and slow the reaction down. |
Chemistry World May 22, 2008 Richard Van Noorden |
Xenon doubled up with water Creating a water molecule with two noble gas atoms interpolated into its structure sounds an improbable feat, but a international team of researchers now claim to have trapped just such an exotic compound in xenon. |
Chemistry World September 12, 2013 Andy Extance |
Sulfur difluoride dimer exposes bonding strangeness Calculations on unusual bonding in the sulfur difluoride dimer FSSF 3 have provided evidence to help explain why some compounds don't follow long-established chemical rules. |
Chemistry World September 6, 2007 Tom Westgate |
Probe Maps Individual Atoms in Semiconductor Troublesome clusters of dopant atoms have been 'seen' for the first time. Researchers have drawn up the first 3D maps of the individual atoms in a semiconductor. |
Chemistry World September 14, 2011 Simon Hadlington |
World's Longest Carbon-Carbon Bond Created Harnessing both attractive and repulsive forces enabled chemists to make a carbon-carbon bond 30 per cent long than normal. |
Chemistry World November 18, 2014 Tim Wogan |
New silicon allotrope could revolutionize solar cells A new, direct band gap allotrope of silicon has been synthesized by researchers in the US. It could potentially revolutionize solar cells and light-emitting devices. |
Chemistry World May 29, 2015 Andy Extance |
Noble gas joins I -hole interaction crowd Despite noble gases' characteristic unreactivity, Spanish chemists have calculated that molecules containing xenon can interact non-covalently through what they've called 'aerogen bonding'. |
Chemistry World May 30, 2012 Jon Cartwright |
Tiny buckyball grown around metal atom An international team of researchers has observed the smallest fullerene to form spontaneously to date using metal atoms for stabilization. |
Chemistry World January 29, 2015 Santiago Alvarez |
What we mean when we talk about bonds The chemical bond is still a matter of lively debate among chemists, even a century after Gilbert Lewis introduced his electron pair bonding concept. |
Chemistry World October 18, 2007 Simon Hadlington |
Nanoparticle Reveals Sulfur's Midas Touch Researchers in the US have taken a snapshot of the inside of a gold nanoparticle, shedding crucial new light on one of chemistry's longest-standing questions: how does sulfur bind to gold? |
Chemistry World February 28, 2007 Simon Hadlington |
Individual Atoms' Chemical ID Revealed Researchers have demonstrated for the first time that atomic force microscopy can be used to reveal the chemical identity of individual atoms on a surface at room temperature. |
Chemistry World December 13, 2009 Lewis Brindley |
Breaking the strongest bonds Chemists have uncovered a way to sever two of the strongest bonds in chemistry - in dinitrogen and carbon monoxide - and make useful organic compounds. |
Chemistry World July 8, 2010 Phillip Broadwith |
Flattening carbon UK researchers have managed to synthesise a molecule with an almost planar four-coordinate carbon atom bonded to two lithium atoms and bulky organic ligands. |
Technology Research News December 1, 2004 Eric Smalley |
Pure Silicon Laser Debuts Researchers have made a prototype laser from silicon. The laser is tunable, meaning it can lase in a range of wavelengths, or colors, and it works at room temperature. |
Chemistry World August 17, 2009 James Urquhart |
New method for fluorinating compounds Fluorine atoms are incorporated into aromatic organic compounds for many reasons, including their ability to increase metabolic stability, solubility and bioavailability. |
Chemistry World December 23, 2008 Tom Westgate |
Gallium and uranium join forces A molecule featuring the first ever uranium-gallium bond may shed light on how related carbene ligands selectively extract uranium from lanthanides |
Chemistry World March 27, 2012 Erica Wise |
Unlocking the mysteries of ice The unusual properties of ice under compression are due to Coulomb repulsion between bonding and non-bonding electron pairs, say scientists from Singapore and China. |
Technology Research News March 26, 2003 |
Hydrogen yields smaller nanowires Researchers from City University of Hong Kong in China have produced silicon wires that are smaller than any made before. |
Chemistry World May 13, 2013 Philip Ball |
The name's (quadruple) bond? The nature of C 2 is still imperfectly understood and has recently sparked extensive debate in the chemical literature. The question seems simple: how are the two atoms bonded? |
Chemistry World June 25, 2014 Tim Wogan |
Unusual 2D silica allotrope predicted A graphene-like allotrope of silica with unusual physical and electrical properties has been predicted by theoretical chemists in Turkey. |
Chemistry World April 29, 2009 Matt Wilkinson |
World's first 'naked' uranium-transition metal bond formed UK scientists have made 'naked' uranium-transition metal bonds, providing vital evidence that valence orbitals can play a role in actinide bonding. |
Chemistry World February 6, 2012 David Bradley |
10 out of 10 for boron's coordinated effort A team in the US has created a boron compound that has the highest coordination number of any planar species, squeezing 10 spoke-like bonds from a central metal hub to 10 boron atoms equally spaced around a nanoscopic wheel. |
Chemistry World June 2010 Paul Docherty |
Column: Totally Synthetic Although its chemistry is mature and varied, my use of silicon reagents in my synthetic forays has been limited to a somewhat clumsy use of hydroxyl protecting groups. |
InternetNews September 18, 2006 David Needle |
Intel Sees The Laser Light Intel announced its latest research designed to create a super-fast hybrid silicon processor capable of moving data at terabits-per-second speed. |
Geotimes November 2003 Lisa Corathers |
Mineral Resource of the Month: Silicon The Silicon Commodity Specialist for the U.S. Geological Survey has compiled this information about silicon, an extremely versatile mineral with many applications in the manufacture of iron and steel, aluminum alloys, chemicals, and electronic microchips. |
Technology Research News February 9, 2005 |
All-silicon chip laser demoed Researchers from Intel have moved a step forward in the push to meld lasers and silicon chips, which could eventually be used in portable biological and chemical sensors, to amplify communications signals, and to convert light to different wavelengths. |
Chemistry World October 28, 2014 Derek Lowe |
Chemical space is big. Really big. We are not going to run out of interesting and useful structures, and the uses that they could be put to are probably also beyond our imagining. In chemical space, we really do have an effectively endless frontier. |
Chemistry World December 15, 2010 Hayley Birch |
New technique probes electron properties of individual atoms A new, low voltage electron microscopy technique allows scientists to discriminate not just between atoms of different elements but between atoms of the same element in different electronic states. |
Technology Research News December 11, 2002 Kimberly Patch |
DNA prefers diamond DNA is particularly useful for sensing pathogens like those used in biological weapons. The trick to making sensors that can be used in the field may involve attaching strands of DNA to a thin film of diamond, preparing sensors to withstand the rigors of the real world. |