Similar Articles |
|
Chemistry World October 5, 2006 Mark Peplow |
Boron Shows Its Negative Side A molecule that hosts a negatively-charged boron atom could prove to be an exciting addition to the chemist's toolbox, according to researchers who have isolated the anion as its lithium salt. |
Chemistry World February 6, 2012 David Bradley |
10 out of 10 for boron's coordinated effort A team in the US has created a boron compound that has the highest coordination number of any planar species, squeezing 10 spoke-like bonds from a central metal hub to 10 boron atoms equally spaced around a nanoscopic wheel. |
Reactive Reports Issue 54 David Bradley |
Metals Take on Carbon's Bonding Characteristics A rethink about chemical bonding might be in the cards thanks to research that shows that the metal indium forms bonds in a manner not dissimilar to organic carbon atoms. |
Chemistry World March 3, 2010 Jon Cartwright |
Hydrocarbon turns superconductor Researchers in Japan have created the first superconducting material based on a molecule of carbon and hydrogen atoms. |
Chemistry World December 23, 2008 Tom Westgate |
Gallium and uranium join forces A molecule featuring the first ever uranium-gallium bond may shed light on how related carbene ligands selectively extract uranium from lanthanides |
Chemistry World May 30, 2012 Jon Cartwright |
Tiny buckyball grown around metal atom An international team of researchers has observed the smallest fullerene to form spontaneously to date using metal atoms for stabilization. |
Chemistry World August 14, 2012 Andy Extance |
Carbon clusters score lucky seven US and Chinese chemists say that they've calculated the structure of a stable carbon dication that would have a higher coordination number than any yet seen experimentally. |
Chemistry World December 7, 2009 Simon Hadlington |
Metal atoms in carbon nanotubes caught on film An international team of researchers has filmed individual metal atoms as they move around and react within the confines of a carbon nanotube. |
Chemistry World January 15, 2010 Kate McAlpine |
Capturing carbon with copper A team of researchers in the Netherlands have devised a trap that can pull carbon dioxide out of the air. |
Chemistry World April 15, 2010 Simon Hadlington |
Lead joins the aromatic ring club Scientists in Japan have successfully incorporated an atom of lead into an aromatic molecule - the heaviest metal so far to be 'aromatised'. |
Chemistry World June 5, 2006 Simon Hadlington |
The Attraction of Gold for Gold Researchers are unravelling some of the fundamental chemistry surrounding a key but poorly understood aspect of the coordination chemistry of gold -- the weak `aurophilic' interactions between adjacent atoms of Au(I) in organic complexes. |
Reactive Reports David Bradley |
Subjective Suboxide Carbon monoxide and carbon dioxide are probably the best known molecules containing just carbon and oxygen, but they do form others, such as carbon suboxide (C3O2), which is one of the most stable. |
Technology Research News June 2, 2004 |
Buckyballs Gain Smaller Kin Researchers from Xiamen University and the Chinese Academy of Sciences have constructed a smaller version of the buckyball or C60 fullerene molecule, a spherical cage of carbon atoms. |
Chemistry World April 29, 2009 Matt Wilkinson |
World's first 'naked' uranium-transition metal bond formed UK scientists have made 'naked' uranium-transition metal bonds, providing vital evidence that valence orbitals can play a role in actinide bonding. |
Chemistry World January 24, 2010 Andy Extance |
Boron cluster forms unique ring system Clusters of nineteen boron atoms gather together in a ring structure unlike any other seen, with two planar -bonded aromatic systems nestled inside one another. |
Chemistry World August 1, 2010 Mike Brown |
Snapshots of mystery molecular structures Researchers have used atomic force microscopy to produce clear molecular images that can help determine the correct atomic structure of unknown organic molecules. |
Chemistry World February 21, 2007 Tom Westgate |
Complex Organic Molecules Teamed with Iodine Chemists have developed a method for constructing complex halogen-containing organic molecules from simple compounds in a single step. The discovery could pave the way for the synthesis of many potentially useful naturally occurring molecules. |
Chemistry World May 9, 2010 Hayley Birch |
Filming fullerene formation Real-time, atomic level microscopy has revealed that the round, cage-like structures of fullerenes can form directly from sheets containing large numbers of carbon atoms. |
Technology Research News August 13, 2003 |
Carbon wires expand nano toolkit Scientists looking for building blocks to form electronics and machines that are not much bigger than molecules have gained a new tool. |
Chemistry World September 19, 2010 Simon Hadlington |
One dimensional carbon chains get longer Researchers in Canada have synthesised the longest polyyne to date - a linear chain of carbon atoms. |
Chemistry World October 29, 2009 Phillip Broadwith |
Two metals are better than one UK chemists have developed reagents that can metallate ethers and ethene at room temperature without them disintegrating. |
Technology Research News December 29, 2004 |
Coated Nanotubes Make Biosensors Researchers are using carbon nanotubes to sense single molecules, and are tapping the way carbon nanotubes give off near-infrared light in order to read what the sensors have detected. |
Reactive Reports Issue 63 David Bradley |
Natural Copy Cat While plants convert carbon dioxide into sugar and oxygen, chemists are having a more difficult time finding an efficient method for converting carbon dioxide into useful fuels. |
Chemistry World November 8, 2007 James Mitchell Crow |
First Mg(I) Complex Made Chemists have created the first stable magnesium(I) compounds, a breakthrough for a metal whose chemistry is ruled by the oxidation state. |
Chemistry World December 15, 2010 Hayley Birch |
New technique probes electron properties of individual atoms A new, low voltage electron microscopy technique allows scientists to discriminate not just between atoms of different elements but between atoms of the same element in different electronic states. |
Chemistry World March 10, 2006 |
Dual Organometallics Enhance Zinc Reactivity Chemists have synthesised organometallic compounds that enable zinc to participate in directed metalation of organic substrates. |
Chemistry World June 14, 2012 David Bradley |
Tripling up on boron bonds Carbon and nitrogen are well known for their triple bonds, but making stable compounds with a triple bond between two boron atoms hadn't been achieved despite the computational possibilities. Until now. |
Technology Research News October 8, 2003 |
Nanotubes harvest electrons Researchers from the University of Bologna and the University of Trieste in Italy, and the University of Notre Dame have found a way to alter carbon nanotubes so that they efficiently separate electrical charge. The method could lead to more efficient solar cells. |
Chemistry World May 16, 2006 Jon Evans |
Buckyballs Worth Their Weight in Gold A team of chemists and physicists has uncovered evidence for the existence of hollow buckyball-like cages made of gold. |
Chemistry World December 10, 2008 Simon Hadlington |
Alcohol enantiomer conundrum cracked UK chemists have discovered a straightforward new way to make chiral tertiary alcohols that gives selective access to either enantiomer. |
Chemistry World May 13, 2013 Philip Ball |
The name's (quadruple) bond? The nature of C 2 is still imperfectly understood and has recently sparked extensive debate in the chemical literature. The question seems simple: how are the two atoms bonded? |
Technology Research News March 9, 2005 |
Nanotubes Boost Molecular Devices Researchers have constructed an extremely small transistor from a pair of single-walled carbon nanotubes and organic molecules. The tiny transistor could eventually be used in ultra-low-power electronics. |
Chemistry World November 7, 2013 Polly Wilson |
Hydrogen adopts alkali metal position For the first time, scientists have shown that hydrogen can stand in for alkali metals in typical alkali metal structures. |
Chemistry World January 20, 2010 James Urquhart |
Disilicate synthesis success A compound containing a stable silicon-silicon bond between two negatively charged pentacoordinated silicon atoms - silicates - has been synthesized and isolated for the first time by Japanese researchers. |
Chemistry World February 27, 2014 Simon Hadlington |
Quantum tunnelling sparks chemistry on cold surfaces Chemistry in deep space could be more diverse than thought after the discovery that larger atoms can quantum tunnel. |
Chemistry World June 23, 2011 Simon Hadlington |
Breaking the carbon-fluorine bond US chemists have discovered a new way to break the bond between carbon and fluorine atoms - the strongest carbon bond there is. |
Chemistry World May 22, 2008 Richard Van Noorden |
Xenon doubled up with water Creating a water molecule with two noble gas atoms interpolated into its structure sounds an improbable feat, but a international team of researchers now claim to have trapped just such an exotic compound in xenon. |
Chemistry World October 4, 2007 Richard Van Noorden |
Nanofibers Show Hydrogen Promise UK chemists have overcome the shortcomings of a promising hydrogen storage material by simply converting it into nanofibers. |
Chemistry World March 2011 |
Column: The crucible Chemistry cannot all be reduced to physics, argues Philip Ball |
Chemistry World September 6, 2013 Melissae Fellet |
Unravelling stereochemistry via mass spectrometry Researchers have used mass spectrometry to determine the stereochemistry of a prototypical chiral molecule, CHBrClF. |
Chemistry World December 18, 2012 Caryl Richards |
Boron vapor trail leads to heterofullerenes A team of scientists has developed a simple way to synthesize heterofullerenes -- fullerenes with atoms other than carbon in their structure -- by exposing fullerene to boron vapor during their growth. |
Chemistry World September 6, 2007 Tom Westgate |
Probe Maps Individual Atoms in Semiconductor Troublesome clusters of dopant atoms have been 'seen' for the first time. Researchers have drawn up the first 3D maps of the individual atoms in a semiconductor. |
Chemistry World May 28, 2012 Hayley Birch |
Buckyballs grow by gobbling up carbon New insights into the formation of some of chemistry's most iconic molecules - the fullerenes - suggest they grow by 'eating' carbon atoms. |
Technology Research News June 4, 2003 |
Study shows DNA will fill tubes Researchers from the Max Planck Institute in Germany have shown by computer simulation that it is possible to insert DNA into a carbon nanotube. |
Chemistry World June 25, 2012 Michael Gross |
Running Rings Around Molecular Wires New research could open up the possibility of using new carbon compounds as wires in molecular electronics. |
Chemistry World November 29, 2010 Simon Hadlington |
Mystery of diamond polishing solved? Mike Ashfold, an expert on the chemistry of diamond at the University of Bristol in the UK, says, 'Polishers have long recognised that some diamond surfaces polish more easily, and more successfully, than others. |
Wired Erin Biba |
Molecular Frameworks, the Building Blocks of All Life The world is complicated, but not as complicated as you might think. Most organic molecules derive from a few relatively simple architectures. |
Chemistry World May 27, 2014 Simon Hadlington |
Unusual H-bond patterns revealed in single molecule image Researchers in the US have used a scanning tunnelling microscope to produce the latest images of structure and bonding in a single molecule, by sensing the molecule's local potential energy landscape. |
Technology Research News February 25, 2004 |
Nanotube mix makes liquid crystal Carbon nanotubes are rolled-up sheets of carbon atoms that can be as narrow as 0.4 nanometers, or the span of four hydrogen atoms. They have useful electrical and mechanical properties and are a leading player in nanotechnology. |
Chemistry World October 18, 2007 Simon Hadlington |
Nanoparticle Reveals Sulfur's Midas Touch Researchers in the US have taken a snapshot of the inside of a gold nanoparticle, shedding crucial new light on one of chemistry's longest-standing questions: how does sulfur bind to gold? |