Similar Articles |
|
Chemistry World February 2011 Paul Docherty |
Column: Totally Synthetic Although most of the natural products I've discussed have had biological activity at the core of the rationale for their synthesis, most organic chemists will admit that an unusual chemical structure is by far the stronger draw. |
Chemistry World May 2010 Paul Docherty |
Column: Totally Synthetic In the case of englerin A, the synthetic strategies used by Dawei Ma's group at the Chinese Academy of Sciences, Shanghai, China, 1 and Antonio Echavarren's team at Rovira and Virgili University, Tarragona, Spain, 2 are extremely similar. |
Chemistry World January 29, 2014 |
Organic matter: Indoxamycins A, C and F In 2012, Erick Carreira's group in Zurich reported the total synthesis of indoxamycin B. 1 This 24-step organometallic tour de force resulted in a structural reassignment and set the bar rather high for future work on this family. |
Chemistry World August 2011 Paul Docherty |
Column: Totally Synthetic Yuanhuapin, a fabulously complex member of the daphnane diterpene orthoester class of natural products, bears an astonishing twelve contiguous stereogenic centres around its seven rings (look closely!). |
Chemistry World September 20, 2007 Lewis Brindley |
New Catalyst Rings the Changes Organic chemists in the US have developed a method to control the stereochemistry of a useful intramolecular Diels-Alder reaction. |
Chemistry World August 30, 2009 Phillip Broadwith |
C-H oxidation proves its worth US researchers are going against the grain of total synthesis and developing new approaches to complex molecules. |
Chemistry World November 27, 2012 Paul Docherty |
Pentalenolactone A methyl ester One team that really gets the Pauson -- Khand reaction or the PKR and all its nuances is that led by Zhen Yang at Peking University in Beijing, China. They recently published a very neat synthesis of the intricate pentalenolactone |
Chemistry World December 2010 Paul Docherty |
Column: Totally Synthetic In a conversation at the beginning of this year, a friend and I considered the most challenging targets available to the total-synthesizer - and maoecrystal V was at the top of the list. |
Chemistry World May 29, 2013 Paul Docherty |
Pactamycin A member of a 'rival' field stating that a molecule is 'inaccessible by synthetic organic chemistry' is like a red rag to the proverbial bull. This challenge surrounds analogs of pactamycin, a complex cyclopentane-based target with an exceptionally potent biological profile. |
Chemistry World April 2012 Paul Docherty |
Column: Totally Synthetic Detecting rearrangements still seems like an abstract ability for aspiring synthetic chemists. Erick Carreira's synthesis of indoxamycin B is a great case in point, employing two rearrangement reactions. |
Chemistry World January 28, 2015 |
Rubriflordilactone A It's likely that organic chemists have been practicing retrosynthesis in one form or another for at least a century, and certainly for decades before E J Corey formalized the concept in the mid-1990s |
Chemistry World August 2009 Paul Docherty |
Column: Totally Synthetic Richmond Sarpong's research group at University of California, Berkeley, US, have taken quite an interest in lyconadin A, publishing an initial, racemic synthesis. |
Chemistry World April 2010 Paul Docherty |
Column: Totally Synthetic When one attempts the first synthesis of a natural product, the set of challenges are often unknown; which intermediates are either inaccessible or unstable, for instance. |
Chemistry World November 5, 2013 Paul Docherty |
Marcfortines B & C Natural product isolation is generally a tale of a journey to an obscure or inaccessible location, followed by pulping a harmless plant or marine sponge to get at compounds made by some bacteria hiding out in the core. |
Chemistry World November 17, 2008 Simon Hadlington |
Catalyst flexes for extra control US chemists have developed a new type of catalyst capable of exerting high stereochemical control over olefin metathesis reactions |
Chemistry World November 2, 2015 |
Batzelladine B Of all the diverse substances that nature produces, the alkaloids -- small molecules containing basic nitrogen -- have had the greatest impact on human history and health. |
Chemistry World July 2009 Paul Docherty |
Column: Totally Synthetic When it comes to making large natural products, different researchers will often propose identical 'end-game' strategies to complete the target. |
Chemistry World January 2009 Paul Docherty |
Column: Totally Synthetic In the search for new biologically active natural products, sometimes a team isolating a new compound family will be lucky enough to find one active member. |
Chemistry World February 2012 Paul Docherty |
Column: Totally Synthetic Medium rings are a beguiling feature found in a host of natural products, owing to their behavioral oddities. |
Chemistry World May 2012 Paul Docherty |
Column: Totally Synthetic Hopeanol and hopeahainol A |
Chemistry World June 2011 |
Column: Totally Synthetic I've never heard of the Polonovski-Potier reaction, the keystone of a remarkable synthesis by a team led by Tohru Fukuyama at the University of Tokyo, Japan. |
Chemistry World January 8, 2014 Karl Collins |
Oxidation station Small molecules are making significant inroads -- with reactivity and selectivity approaching levels previously thought unachievable. |
Chemistry World March 2012 Paul Docherty |
Column: Totally Synthetic Ring strain is a fascinating phenomenon - one that is best understood with plastic modelling kits, wearing safety specs for ring sizes of four or less. |
Chemistry World September 2008 Paul Docherty |
Column: Totally Synthetic The need to discover new antibiotics to treat resistant strains of bacteria is a well- documented and discussed challenge for chemists. |
Chemistry World July 3, 2015 Andy Extance |
Copper catalysis overcomes double bond trouble Some carbon-carbon double bonds seem too unreactive for synthetic use -- but that's just how chemists in the US are now exploiting them. |
Chemistry World June 2009 Paul Docherty |
Column: Totally Synthetic With potent bacteria-beating activity, it's no surprise that kendomycin has recently grabbed quite a bit of attention. |
Chemistry World December 2008 Paul Docherty |
Column: Totally Synthetic Pseudolaric acid B: regular readers of this column's online incarnation will have noticed that this is the second appearance for this particular synthesis. |
Chemistry World March 2009 Paul Docherty |
Column: Totally Synthetic Marine waters have produced some of the biggest celebrities of the natural product world - including the brevitoxins, saxitoxins and tetrodotoxins, 1 famous as much for the sheer human effort needed for their landmark syntheses as for their complexity and size. |
Chemistry World December 2009 Paul Docherty |
Column: Totally Synthetic What turns a good synthesis into a great synthesis are the steps surrounding that motif, something that Darren Dixon from the University of Oxford, UK, exemplifies with this synthesis of Nakadomarin A. |
Chemistry World September 6, 2006 Michael Gross |
Selective Shortcut Chemists have developed a simple catalyst that speeds up the synthesis of a chiral protected building block used in many complex syntheses. |
Chemistry World November 2011 Paul Docherty |
Column: Totally Synthetic Gelsemoxonine has an extra four-membered azetidine ring, making for a considerable synthetic challenge. |
Chemistry World November 2010 Paul Docherty |
Column: Totally Synthetic Perhaps the most familiar (and dull - they do say that familiarity breeds contempt.) chemical reaction to medicinal chemists is the amide bond formation. |
Chemistry World June 2010 Paul Docherty |
Column: Totally Synthetic Although its chemistry is mature and varied, my use of silicon reagents in my synthetic forays has been limited to a somewhat clumsy use of hydroxyl protecting groups. |
Chemistry World October 2008 Paul Docherty |
Column: Totally Synthetic Samuel Danishefsky of Columbia University (and the Sloan-Kettering Institute for cancer research), has focused on function rather than family. His many synthetic conquests are unified by their cancer-busting potential. |
Chemistry World January 2011 Paul Docherty |
Column: Totally Synthetic Although the story is incomplete, the target is a worthy challenge - leiodolides A and B have powerful activity and selectivity against NI60 tumour cells, and may lead to therapeutic agents. |
Chemistry World June 27, 2013 Paul Docherty |
Bolivianine The still-growing and insanely diverse class of terpene natural products is probably responsible for a considerable number of undergraduate headaches. |
Chemistry World January 2, 2013 Paul Docherty |
Flueggine A One of the most prolific sources of biologically active natural products is traditional medicines -- whose active components can be exceptionally potent. The Euphorbiaceae family of plants is a productive source of medicinal targets, including the Securinega alkaloids. |
Chemistry World March 25, 2011 Simon Hadlington |
New synthesis for chiral anticancer compound The promising anticancer compound nutlin-3 is likely to become more widely available to researchers thanks to a new synthetic protocol developed by US chemists. |
Chemistry World February 2009 Paul Docherty |
Column: Totally Synthetic The farming squeeze has renewed interest in compounds with anti-insect abilities, especially those known for their activity against specific pests. |
Chemistry World July 27, 2015 |
(--)-Jiadifenolide I believe that Ryan Shenvi's could well be the last synthesis we see of the popular neurotrophic agent jiadifenolide, at least for some time. |
Chemistry World May 2011 Paul Docherty |
Column: Totally Synthetic The ability to understand molecular structure is perhaps both our greatest skill and largest encumbrance as scientists. A quick glance at the structure of a target such as nanolobatolide tells us much about its connectivity and the manner in which it might react. |
Chemistry World January 24, 2013 Paul Docherty |
Hyperforin Studies of St John's wort have found several biologically active ingredients, but the primary agent is hyperforin, a potent inhibitor of several neurotransmitters. |
Chemistry World March 2011 Paul Docherty |
Column: Totally Synthetic Discovered independently by two chemists in the 1870s, it's remarkable that 140 years later, science is still tweaking and improving the aldol reaction. |
Chemistry World September 2009 Paul Docherty |
Column: Totally Synthetic Maduropeptin chromophore (the active component of a chromopore-protein complex, noted as for its potent antitumor and antibiotic activity) is built of two distinct domains |
Chemistry World July 2011 Paul Docherty |
Column: Totally Synthetic At first glance rippertenol looks a mere hop-skip-and-jump from its parent. However, a more careful examination reveals a stray methyl group at C1, complicating the synthesis of an already tricky target. |
Chemistry World July 2010 Paul Docherty |
Column: Totally Synthetic Isolated in 1986, the steroid family of aplykurodinones have shown selective cytotoxicity in a variety of cancer cell lines, and add to the phenomenal list of steroids with potent medicinal properties. |
Chemistry World January 2010 Paul Docherty |
Column: Totally Synthetic Of all the natural product classes, the steroid family are perhaps the most prevalent in the public consciousness; from cholesterol to testosterone, their infamy inflates the 'science bit' in countless advertisements. |
Chemistry World February 28, 2013 Paul Docherty |
Lyconadin A Since its isolation from the clubmoss Lycopodium complanatum in 2001, lyconadina A has been party to three total syntheses. All that interest stems from anti-Alzheimer's activity attributed to the lycopodium family. |
Chemistry World October 1, 2012 Paul Docherty |
Prostaglandin F2I There's been no shortage of grant funding for synthetic chemistry of the prostaglandins, keeping some of the finest minds in organic chemistry engaged over the last five decades. |
Chemistry World November 27, 2009 Simon Hadlington |
A simple way to join an olefin to an arene Chemists in the US have developed a simple and effective way to carry out a key class of reaction in organic synthesis - the bolting an olefin to an aromatic ring. |