Similar Articles |
|
Chemistry World May 29, 2013 Paul Docherty |
Pactamycin A member of a 'rival' field stating that a molecule is 'inaccessible by synthetic organic chemistry' is like a red rag to the proverbial bull. This challenge surrounds analogs of pactamycin, a complex cyclopentane-based target with an exceptionally potent biological profile. |
Chemistry World December 2010 Paul Docherty |
Column: Totally Synthetic In a conversation at the beginning of this year, a friend and I considered the most challenging targets available to the total-synthesizer - and maoecrystal V was at the top of the list. |
Chemistry World January 2010 Paul Docherty |
Column: Totally Synthetic Of all the natural product classes, the steroid family are perhaps the most prevalent in the public consciousness; from cholesterol to testosterone, their infamy inflates the 'science bit' in countless advertisements. |
Chemistry World February 2012 Paul Docherty |
Column: Totally Synthetic Medium rings are a beguiling feature found in a host of natural products, owing to their behavioral oddities. |
Chemistry World February 2011 Paul Docherty |
Column: Totally Synthetic Although most of the natural products I've discussed have had biological activity at the core of the rationale for their synthesis, most organic chemists will admit that an unusual chemical structure is by far the stronger draw. |
Chemistry World October 11, 2012 Ian Le Guillou |
Turbo-charged Diels-Alder reaction The Diels - Alder reaction is one that sticks in the mind of even the most reluctant chemistry student -- there is a certain elegance in the ring formation from an alkene and diene. |
Chemistry World October 2010 Paul Docherty |
Barekoxide and barekol Like most scientists, organic chemists can often obsess about a problem, endlessly pursuing the perfect yield or enantioselectivity, often leading to tears and broken glassware. |
Chemistry World December 2011 Paul Docherty |
Column: Totally Synthetic An important subclass of marine neurotoxins contains spirocyclic imines. Larger examples such as the pinnatoxins have tended to hog the limelight, but the increasingly prolific Daniel Romo has focused his sights on gymnodimine - a slightly smaller family member. |
Chemistry World August 2011 Paul Docherty |
Column: Totally Synthetic Yuanhuapin, a fabulously complex member of the daphnane diterpene orthoester class of natural products, bears an astonishing twelve contiguous stereogenic centres around its seven rings (look closely!). |
Chemistry World February 28, 2013 Paul Docherty |
Lyconadin A Since its isolation from the clubmoss Lycopodium complanatum in 2001, lyconadina A has been party to three total syntheses. All that interest stems from anti-Alzheimer's activity attributed to the lycopodium family. |
Chemistry World April 2011 Paul Docherty |
Column: Totally Synthetic Reactions in the synthesis of guanacastepene N. Discovered in fungi growing on trees in the Guanacaste conservation area in Costa Rica, several syntheses of this family have appeared in the decade since their isolation. |
Chemistry World June 2008 Paul Docherty |
Column: Totally Synthetic Harvard University's David Evans is renowned for his prowess with an aldol reaction, and he has used the endlessly flexible transformation to make a diverse range of natural products. |
Chemistry World January 2009 Paul Docherty |
Column: Totally Synthetic In the search for new biologically active natural products, sometimes a team isolating a new compound family will be lucky enough to find one active member. |
Chemistry World February 2010 Paul Docherty |
Column: Totally Synthetic Palau'amine is an alkaloid which has stubbornly held off synthesis for over 15 years. Its nemesis comes in the form of Phil Baran at the Scripps Research Institute, La Jolla, US. |
Chemistry World April 14, 2009 Lewis Brindley |
Osmium and pyridine ring together Organic chemists in China have found a way to put osmium into a pyridine ring - leading to the synthesis of the first metallapyridinium complex. |
Chemistry World July 1, 2012 Paul Docherty |
Vincorine Cage-structured natural products are some of the most appealing (if perhaps not appetising) targets for organic chemists -- perhaps due to their obvious intricacy of form, but also because of their structural rigidity. |
Chemistry World December 2009 Paul Docherty |
Column: Totally Synthetic What turns a good synthesis into a great synthesis are the steps surrounding that motif, something that Darren Dixon from the University of Oxford, UK, exemplifies with this synthesis of Nakadomarin A. |
Chemistry World July 27, 2015 |
(--)-Jiadifenolide I believe that Ryan Shenvi's could well be the last synthesis we see of the popular neurotrophic agent jiadifenolide, at least for some time. |
Chemistry World September 2010 Paul Docherty |
Column: Totally Synthetic After a target has been synthesised, and the question of 'can we make this?' has been answered, perhaps the most important remaining question is 'how did nature make it?' |
Chemistry World March 2012 Paul Docherty |
Column: Totally Synthetic Ring strain is a fascinating phenomenon - one that is best understood with plastic modelling kits, wearing safety specs for ring sizes of four or less. |
Chemistry World May 2011 Paul Docherty |
Column: Totally Synthetic The ability to understand molecular structure is perhaps both our greatest skill and largest encumbrance as scientists. A quick glance at the structure of a target such as nanolobatolide tells us much about its connectivity and the manner in which it might react. |
Chemistry World June 27, 2013 Paul Docherty |
Bolivianine The still-growing and insanely diverse class of terpene natural products is probably responsible for a considerable number of undergraduate headaches. |
Chemistry World July 30, 2013 Paul Docherty |
Melotenine A Chirality, where would we be without you? Often the bane of the synthetic chemist's life, the challenge of asymmetry is perhaps what makes total synthesis so endlessly intriguing. |
Chemistry World October 2009 Paul Docherty |
Column: Totally Synthetic It's been a while since I've seen such a battle for the 'first publication' of a molecule as has recently been witnessed for haplophytine. |
Chemistry World November 5, 2013 Paul Docherty |
Marcfortines B & C Natural product isolation is generally a tale of a journey to an obscure or inaccessible location, followed by pulping a harmless plant or marine sponge to get at compounds made by some bacteria hiding out in the core. |
Chemistry World November 27, 2012 Paul Docherty |
Pentalenolactone A methyl ester One team that really gets the Pauson -- Khand reaction or the PKR and all its nuances is that led by Zhen Yang at Peking University in Beijing, China. They recently published a very neat synthesis of the intricate pentalenolactone |
Chemistry World January 2012 Paul Docherty |
Column: Totally Synthetic What a Japanese team demonstrates in this synthesis of dragmacidin D is the state of the art, uniting all the key fragments using C-H bond couplings. |
Chemistry World March 2011 Paul Docherty |
Column: Totally Synthetic Discovered independently by two chemists in the 1870s, it's remarkable that 140 years later, science is still tweaking and improving the aldol reaction. |
Chemistry World September 20, 2007 Lewis Brindley |
New Catalyst Rings the Changes Organic chemists in the US have developed a method to control the stereochemistry of a useful intramolecular Diels-Alder reaction. |
Chemistry World January 28, 2015 |
Rubriflordilactone A It's likely that organic chemists have been practicing retrosynthesis in one form or another for at least a century, and certainly for decades before E J Corey formalized the concept in the mid-1990s |
Chemistry World July 2008 Paul Docherty |
Column: Totally Synthetic The target is hypocrellin A, which couldn't look much less like last month's callipeltoside A. Even a casual glance reveals one intriguing feature of this target - the fact it exists in equilibrium with an isomer. |
Chemistry World August 29, 2012 Paul Docherty |
Amphidinolide F We're plunging into the marine depths to find natural products with prodigious biological activity. The amphidinolide family comprises over 30 members, varying in architecture but (almost) all featuring a complex and highly decorated macrolactone ring at the core. |
Chemistry World January 29, 2014 |
Organic matter: Indoxamycins A, C and F In 2012, Erick Carreira's group in Zurich reported the total synthesis of indoxamycin B. 1 This 24-step organometallic tour de force resulted in a structural reassignment and set the bar rather high for future work on this family. |
Chemistry World June 2011 |
Column: Totally Synthetic I've never heard of the Polonovski-Potier reaction, the keystone of a remarkable synthesis by a team led by Tohru Fukuyama at the University of Tokyo, Japan. |
Chemistry World May 2012 Paul Docherty |
Column: Totally Synthetic Hopeanol and hopeahainol A |
Chemistry World September 2008 Paul Docherty |
Column: Totally Synthetic The need to discover new antibiotics to treat resistant strains of bacteria is a well- documented and discussed challenge for chemists. |
Chemistry World June 1, 2012 Paul Docherty |
atrop-Abyssomicin C This member of the abyssomicin family is the only one to achieve bacteria-bashing prowess, and is also the only one to feature atropisomerism -- a relatively unusual form of stereoisomerism in naturally occurring species |
Chemistry World September 2, 2013 Paul Docherty |
Steviol A discussion is presented on new ways to synthesize the diterpenoid steviol. |
Chemistry World November 2010 Paul Docherty |
Column: Totally Synthetic Perhaps the most familiar (and dull - they do say that familiarity breeds contempt.) chemical reaction to medicinal chemists is the amide bond formation. |
Chemistry World October 1, 2012 Paul Docherty |
Prostaglandin F2I There's been no shortage of grant funding for synthetic chemistry of the prostaglandins, keeping some of the finest minds in organic chemistry engaged over the last five decades. |
Chemistry World April 2010 Paul Docherty |
Column: Totally Synthetic When one attempts the first synthesis of a natural product, the set of challenges are often unknown; which intermediates are either inaccessible or unstable, for instance. |
Chemistry World February 2009 Paul Docherty |
Column: Totally Synthetic The farming squeeze has renewed interest in compounds with anti-insect abilities, especially those known for their activity against specific pests. |
Chemistry World November 2008 Paul Docherty |
Column: Totally Synthetic Vannusal B -- This is a classic case of misassigned identity - the structure published by the researchers who first isolated the compound from its natural source has been recreated via total synthesis, and found wanting. |
Chemistry World August 16, 2009 Tom Bond |
Catalyst free carbon-carbon bond formation The method offers an environmentally friendly way to form one of the most important bonds in organic synthesis. |
Chemistry World October 31, 2012 Paul Docherty |
Epicoccin G The class of natural products known as 2,5-diketopiperazines is both broad and synthetically well-trodden. An important sub-class of these targets are found with a sprinkling of sulfur atoms, and seem particularly well-suited to pathogen-bashing. |
Chemistry World October 29, 2014 |
Lycopodium alkaloids Not all natural products are created equal. A glance at the total synthesis literature from the past decade is enough to discover that some molecules attract a lot more attention than others. |
Chemistry World January 2, 2013 Paul Docherty |
Flueggine A One of the most prolific sources of biologically active natural products is traditional medicines -- whose active components can be exceptionally potent. The Euphorbiaceae family of plants is a productive source of medicinal targets, including the Securinega alkaloids. |
Chemistry World April 2009 Paul Docherty |
Column: Totally Synthetic Perhaps the most frustrating part of being a synthetic chemist is the jealousy with which we must regard nature |
Chemistry World February 27, 2012 Phillip Broadwith |
Bending carbonyl reactivity rules Belgian chemists have uncovered a method to bypass the standard reactivity hierarchy of carbonyl compounds, allowing a ketone or ester to be reduced in the presence of a more reactive aldehyde. |
Chemistry World January 2011 Paul Docherty |
Column: Totally Synthetic Although the story is incomplete, the target is a worthy challenge - leiodolides A and B have powerful activity and selectivity against NI60 tumour cells, and may lead to therapeutic agents. |