Similar Articles |
|
Technology Research News December 15, 2004 |
See-Through Circuits Speed up Researchers have moved transparent semiconductors forward with an indium gallium zinc oxide mixture that can be deposited on plastic, is transparent, and potentially performs one to three orders of magnitude better than today's plastic transistors. |
Technology Research News January 26, 2005 |
Metals Speed Clear Circuits Researchers have improved the performance of a new type of transparent transistor. The zinc tin oxide thin-film transistor is transparent, difficult to scratch, and conducts electricity an order of magnitude faster than previous efforts using the same class of material. |
IEEE Spectrum September 2012 Alfred Poor |
Next-Generation Display Technologies New materials will mean brighter, sharper screens |
Technology Research News October 22, 2003 Eric Smalley |
Nanowires make flexible circuits Nanowires might one day be used to make microscopic machines. But before then they could help liberate computer circuits from the rigid, expensive confines of silicon chips. A process that makes thin films from semiconductor nanowires improves the prospects for plastic electronics and electronic paper. |
IEEE Spectrum August 2005 Justin Mullins |
Shedding Light On Organic Transistors The first single-crystal organic transistor that can be switched on and off by light is giving physicists a unique peek into the way photons interact with organic semiconductors. The new device could have a major impact on the way OLED displays are manufactured. |
IEEE Spectrum October 2005 Stephen Forrest |
The Dawn of Organic Electronics Organic semiconductors are strong candidates for creating flexible, full-color displays and circuits on plastic. |
IEEE Spectrum February 2013 Andrew J. Steckl |
Electronics on Paper Paper electronics could pave the way to a new generation of cheap, flexible gadgets |
IEEE Spectrum October 2007 Bohr et al. |
The High-k Solution Microprocessors coming out this fall are the result of the first big redesign in CMOS transistors since the late 1960s. |
IEEE Spectrum September 2008 Peide D. Ye |
Beyond Silicon's Elemental Logic In the quest for speed, key parts of micro-processors may soon be made of gallium arsenide or other III-V semiconductors |
Technology Research News November 5, 2003 |
Process prints silicon circuits Researchers from Princeton University have demonstrated a way to use a flexible stamp to print thin-film transistors. The researchers' eventual goal is to directly print electronics on flexible surfaces. |
Technology Research News April 7, 2004 Eric Smalley |
Angle speeds plastic transistor Going with the flow is a good way to pick up speed, particularly for plastic transistors. Rotating the crystal 180 degrees can change the transistor's performance by as much as 3.5 times. |
Technology Research News December 17, 2003 Eric Smalley |
Microfluidics make flat screens A new method for making big, cheap flat screen displays is a bit like making muffins. Pour liquid polymer into microfluidic channels aligned above an array of electrodes, let cure, and you have organic thin film transistors. |
Technology Research News October 22, 2003 |
Nanowires boost plastic circuits The move is on to develop flexible, cheap, plastic electronics, but so far organic circuits have fallen far short of silicon chip performance. Researchers from the Hahn-Meitner Institute in Germany have moved the field forward with a new way to make flexible transistors. |
IEEE Spectrum December 2007 Joshua J Romero |
Japanese Engineers Turn High-k Dielectric Transistor Problem on Its Head One gate metal and two high-k dielectrics could mean a cheaper and easier 45-nanometer CMOS manufacturing process for transistors. |
PC Magazine May 4, 2004 Alfred Poor |
What's New With Displays Our guide explains state-of-the-art display technology and looks ahead. |
Technology Research News November 19, 2003 |
Plastic display circuit shines Researchers from the University of Tokyo have taken a step forward by fabricating on a glass surface a circuit that contains an organic light-emitting diode and an organic thin-film transistor. The diode was bright enough to be used in a display, according to the researchers. |
Technology Research News December 3, 2003 |
Carbon boosts plastic circuits Researchers from the California Institute of Technology have devised an inexpensive way to add better-conducting organic source and drain electrodes to organic thin-film transistors. |
Industrial Physicist Avouris & Appenzeller |
Electronics and Optoelectronics with Carbon Nanotubes Evaluating the potential of carbon nanotubes as the basis of a future nanoelectronics technology. |
Military & Aerospace Electronics August 2008 Courtney E. Howard |
Carbon nanotubes enable flexible, printed electronics Flexible electronics for displays, electronic circuits, sensors, memory chips, and other applications are transitioning from rigid substrates, such as silicon and glass, to flexible substrates. |
Technology Research News February 9, 2005 |
Nanotubes on plastic speed circuits Many researchers are working to make plastic electronics that are as fast as today's silicon electronic components -- with the promise to enable flexible, inexpensive and very-large area computer screens. One group of researchers has taken a significant step closer to this goal. |
IEEE Spectrum November 2011 Ahmed & Schuegraf |
Transistor Wars Rival architectures face off in a bid to keep Moore's Law alive. In May, Intel announced the most dramatic change to the architecture of the transistor since the device was invented. |
IEEE Spectrum March 2013 Joachim N. Burghartz |
Make Way for Flexible Silicon Chips We need them because thin, pliable organic semiconductors are too slow to serve in tomorrow's chips. Seamless integration of computing into everyday objects isn't quite here yet. |
Technology Research News June 18, 2003 |
See-through circuits closer The transparent computer displays featured in the film Minority Report were made possible by special effects, but real-world transparent electronics are on the horizon. |
IEEE Spectrum May 2006 Samuel K. Moore |
Poky Plastic Perks Up Materials scientists have invented the first polymer semiconductor to perform almost as well as the type of silicon used to drive flat-panel displays. |
Chemistry World January 8, 2014 Simon Hadlington |
Flexible electronics get even more bendy Researchers in Switzerland have developed a method to create electronic membranes that are thin and flexible enough to wrap around a human hair. |
Chemistry World April 28, 2011 Mike Brown |
Carbon nanotubes in large panel displays US researchers have incorporated carbon nanotubes into organic light-emitting transistors to create devices that rival the performance of their silicon counterparts. |
IEEE Spectrum January 2009 Neil Savage |
Organic Semiconductor Breakthrough Could Speed Flexible Circuits An Illinois company says it has made the first practical complementary polymer circuits. |
Technology Research News June 4, 2003 Kimberly Patch |
Plastic transistors go vertical Researchers from the University of Cambridge in England have brought inexpensive, practical organic transistors a step closer to your grocery cart by devising a pair of processes that form small, vertical transistors from layers of printed polymer. |
IEEE Spectrum October 2011 |
LCDs' Bright Future Three separate advances are making TVs lighter and cheaper |
Technology Research News November 3, 2004 Eric Smalley |
Ultrathin carbon speeds circuits Researchers have found that the equivalent of unrolled carbon nanotubes -- sheets of carbon atoms only a few atoms thick -- have comparable electrical properties and are more compatible with today's chipmaking methods. It could be used practically within five years |
BusinessWeek May 10, 2004 Otis Por |
Just Two Words: Plastic Chips They can endow just about anything with computer smarts -- and they'll be cheap |
IEEE Spectrum October 2005 Salvatore Coffa |
Light From Silicon For decades, silicon was a semiconducting dim bulb, but now we can make it into LEDs that match the best made from more exotic materials |
Technology Research News March 10, 2004 Eric Smalley |
Red wine mends solar cells Researchers from the University of Toledo have found a way to increase energy production using red wine. |
Chemistry World November 27, 2006 Simon Hadlington |
Getting the Dope on a Single Atom of Dopant Scientists have successfully probed the electronic and quantum mechanical properties of a single atom of dopant in a silicon transistor. The research could provide important information necessary for the development of quantum computers. |
Technology Research News December 17, 2003 |
Organic transistors get small Researchers from Cornell University have shown that it is possible to fabricate useful organic thin film transistors that have a channel length as small as 30 nanometers. The smaller the channel, the faster the transistor. Previously, organic TFT channel lengths were limited to about 100 nm. |
Chemistry World February 5, 2007 Lionel Milgrom |
Hafnium Oxide Helps Make Chips Smaller and Faster Intel and IBM have announced that they will use dramatically different materials to build smaller, faster transistors for their next generation of chips. |
IEEE Spectrum March 2008 Prachi Patel-Predd |
A Nanometer-Scale Etch A Sketch Scientists use a microscope to write and erase nanowires. |
IEEE Spectrum May 2011 Keane & Kim |
Transistor Aging Measuring the degradation of microprocessors is tricky. Doing it better would unleash more processing power. |
Technology Research News July 16, 2003 Eric Smalley |
Cheaper optics-chip link on tap One of the best ways to speed up the Internet would be to extend all the way to the home the fiber-optic lines that make up the Net's backbone. One piece of the fiber-to-the-home puzzle is a low-cost way of converting light pulses to electrical signals. A new semiconductor may do the trick. |
Technology Research News March 23, 2005 |
Layers promise cheap circuits The challenge is making organic transistors that work well electronically. |
Technology Research News September 22, 2004 |
Nanowire Makes Standup Transistor Researchers have devised a simple way to make a set of vertical transistors from nanowires. |
IEEE Spectrum October 2011 Ozpinec & Tolbert |
Silicon Carbide: Smaller, Faster, Tougher Meet the material that will supplant silicon in hybrid cars and the electric grid |
Chemistry World December 10, 2009 Simon Hadlington |
Flexible organic flash memory Researchers have succeeded in making an elusive component of organic electronics: a flash memory transistor that can be incorporated into a thin, flexible plastic sheet. |
IEEE Spectrum October 2006 Brian R. Santo |
Acronym Addiction When you live on the cutting edge of technology, there are, literally, no words to describe it. Instead we have acronyms. Lots and lots of acronyms. ABT... BEOL... CSP... etc. |
IEEE Spectrum January 2012 Rachel Courtland |
Start-up Seeks New Life for Planar Transistors SuVolta is pursuing precision doping in its bid to compete with 3-D transistor technology |
Chemistry World July 24, 2008 Simon Hadlington |
Nanotube mesh boosts plastic electronics Circuits on light, flexible surfaces could provide a range of products from paper-thin displays to intelligent food packaging and smart clothing. |
IEEE Spectrum December 2007 Michael Riordan |
The Silicon Dioxide Solution How physicist Jean Hoerni built the bridge from the transistor to the integrated circuit. |
IEEE Spectrum September 2008 |
Paper Transistor Researchers from Universidade Nova de Lisboa, in Portugal, say they've made a transistor in which paper acts as a functional component. |
IEEE Spectrum May 2006 Harry Goldstein |
GaAsing Up Cellphones Gallium arsenide transistors could power tiny, blazingly fast multimedia handsets. |
Wired October 2001 Wil McCarthy |
Ultimate Alchemy Research into artificial atoms could lead to one startling endpoint: programmable matter that changes its makeup at the flip of a switch... |