Similar Articles |
|
Chemistry World June 20, 2010 Jon Cartwright |
Carbon nanotubes boost battery power Researchers in the US claim to have created electrodes from carbon nanotubes that can make lithium-ion batteries some ten times more powerful than conventional models. |
Chemistry World April 2, 2009 Jon Cartwright |
Biological battery powers up Scientists in the US have created a rechargeable 'lithium ion' battery with the help of a genetically programmed virus that acts as a scaffold for highly conductive electrodes. |
Chemistry World January 9, 2014 Tim Wogan |
Disorder opens up battery material field Better lithium-ion batteries that hold more power could be made by introducing disorder into their electrodes -- going against the prevailing wisdom on the best way to improve them. |
Chemistry World July 28, 2014 Tim Wogan |
Better batteries with pure lithium anodes Researchers in the US have developed a coating that could allow next generation batteries to have pure lithium anodes. |
Chemistry World January 28, 2010 Lewis Brindley |
Better batteries with nano-cables Nano-sized cables made with titanium dioxide-coated carbon nanotubes could hold the key to developing new high-capacity batteries, report chemists in Germany and China. |
Chemistry World February 10, 2015 William Bergius |
Next generation lithium -- sulfur batteries given DNA boost In a creative application of rational design, scientists in China have turned to nature to help overcome one of the key challenges facing the most probable successor to the lithium ion battery. |
Chemistry World March 31, 2011 Kate McAlpine |
Water result for Li battery technology A new approach to alkali batteries, in which the cathode is dissolved in water that flows through the system, could overcome the limitations of currently available batteries |
Chemistry World December 3, 2013 Emily James |
Lithium -- sulfur batteries ready to go the distance A non-stop trip from London to Paris in an eco-friendly car could soon be possible, if powered by the latest lithium -- sulfur battery created by scientists in the US. |
Chemistry World January 18, 2011 Philippa Ross |
Pig power for batteries Scientists in China have developed an electrode for lithium-sulfur batteries using pig bones as a cheap and renewable carbon source. |
Popular Mechanics December 20, 2007 Logan Ward |
New Nanowire Battery Life Reaches From iPods to Electric Cars Lithium-ion batteries that power most devices may soon be able to hold 10 times as much power. |
Chemistry World August 8, 2010 Lewis Brindley |
Wet batteries power up The performance of water-based lithium-ion batteries has been greatly boosted by removing oxygen from the power cells, report Chinese researchers. |
Chemistry World December 7, 2015 Emma Stephen |
Chocolate box batteries The truffle inspired carbon nanoparticles consist of a carbon infused sulfur core and an ion-selective polymer shell |
Chemistry World July 3, 2012 Philip Robinson |
Triazine boosts polymer energy storage A team of scientists from Germany and Japan have presented a new principle for storing energy in lithium ion batteries using a porous polymer framework. This could give these new batteries double the energy storage of conventional lithium ion batteries. |
Chemistry World April 7, 2011 Carl Saxton |
Power sources get flexible US scientists have designed an ultra-thin, flexible battery with the highest charge capacity reported for thin film cells. The battery can also be charged at a lower voltage than lithium ion batteries. |
Chemistry World June 12, 2014 Jennifer Newton |
Superelastic battery Lithium ion batteries that can be stretched by 600% have been unveiled by scientists in China. |
Chemistry World July 25, 2013 Jeanne Therese Andres |
Long-life lithium sulfide batteries Scientists from the US and China have identified a polymer that makes lithium sulfide batteries last longer. |
IndustryWeek May 19, 2010 |
Nanocomposite Materials Offer Battery Boost New research from the Georgia Institute of Technology suggests material could vastly improve performance of lithium-ion batteries for cars and electronics. |
Chemistry World October 13, 2011 Fay Nolan Neylan |
Fluoride Shuttle Batteries Lift Off Scientists in Germany say that a rechargeable battery that works on the basis of fluoride transfer between electrodes could have a better storage capacity than current batteries. |
Chemistry World December 9, 2010 Mike Brown |
Lithiation through the lens Scientists have generated high resolution images of lithium ions being deposited on a single nanowire anode, revealing how the material grows and flexes in response to charge. |
Chemistry World December 21, 2015 Tim Wogan |
Doped electrodes cram charge into supercapacitors A new supercapacitor electrode material has been created by Chinese researchers that can store much more energy than conventional supercapacitors. |
Chemistry World November 25, 2008 Lewis Brindley |
Silicon for better batteries A new silicon-based anode could greatly increase the storage capacity of lithium ion batteries - boosting the runtimes of devices such as laptops and mobile phones by up to seven times |
Chemistry World April 7, 2015 Tim Wogan |
Super-fast charging aluminium batteries ready to take on lithium A new rival to the lithium-ion battery has been created that charges in under a minute and still performs almost perfectly after being recharged thousands of times. |
Chemistry World July 26, 2011 Kate McAlpine |
Transparent Lithium Ion Batteries Make Electricity Generating Windows Possible Energy-harvesting windows are a step closer with the development of a transparent lithium ion battery. |
Chemistry World February 15, 2010 Andy Extance |
Reversing attraction shrinks car batteries Transforming the most important attractive force acting between molecules into a repulsive one could enable US scientists to nearly halve the size of lithium-ion batteries. |
Chemistry World September 7, 2015 Tim Wogan |
Graphene and phosphorene upgrade sodium ion battery A new material comprising interspersed layers of graphene and phosphorene has been shown to be a more stable, more conductive and higher capacity anode for sodium ion batteries than previous materials. |
Chemistry World November 2, 2015 Tim Wogan |
New lithium-air battery safe from water damage A lithium-air battery with superior efficiency and stability has been developed by researchers in the UK. |
Chemistry World April 25, 2013 Charlie Quigg |
Inorganic nanosheet to enhance batteries A graphene inspired electrode material that could help batteries hold more power has been developed by Chinese scientists. The large surface area of these cobalt oxide nanosheets is key to their electrochemical performance. |
IEEE Spectrum February 2011 Neil Savage |
Batteries That Breathe Using oxygen as a cathode could give lithium batteries 10 times the energy |
Chemistry World May 10, 2007 Simon Hadlington |
New Electrode Material for High-Capacity Lithium Batteries US researchers presented details of a new electrode material for rechargeable batteries which, they claim, can store almost twice as much charge as conventional electrodes. |
Chemistry World August 10, 2011 Simon Hadlington |
Toyota create first magnesium-sulfur rechargeable battery US researchers have demonstrated the first rechargeable battery system using a magnesium anode and sulfur cathode. |
Chemistry World September 15, 2015 William Bergius |
New cathode material for sodium ion batteries An international team of scientists led by the inventor of the lithium ion battery has put forward a new cathode material for its potential successor, the sodium ion battery. |
Chemistry World October 21, 2014 Katrina Kramer |
Firing up battery safety Lithium ion batteries are used in millions of electronic devices, but they are potentially hazardous. Researchers from the US and China have developed an early warning system to prevent such accidents. |
Chemistry World March 11, 2011 Harriet Brewerton |
Drawing batteries Scientists in Japan have made an electrode for a lithium-air battery using a pencil. The advance could bring efficient, environmentally friendly and safe batteries for electric vehicles a step closer. |
Chemistry World September 26, 2011 Simon Hadlington |
Electric vehicles set to charge ahead 'There is a big effort to improve lithium ion batteries for electric vehicles and largely the outcome will be dictated by how the consumer reacts,' says Daniel Abraham, a battery expert at the Argonne National Laboratory in the US. |
Chemistry World February 23, 2011 Laura Howes |
Capsules for safer and more reliable lithium ion batteries Capsules coated onto electrodes could mitigate potential problems with lithium ion batteries by turning the batteries off when they overheat and 'healing' the electrodes when they crack and degrade, according to a researcher in the US. |
Chemistry World September 15, 2009 Lewis Brindley |
Super-thin batteries made from paper and algae Although the batteries have lower voltage and power density than conventional batteries, their low cost and flexibility hold great promise for applications where metal-based batteries are impractical. |
Chemistry World September 8, 2011 David Bradley |
Seaweed extract gives lithium batteries a boost An extract from brown algae could give rechargeable lithium-ion batteries a boost by allowing silicon nanopowder to be used as a high-capacity alternative to graphite electrodes. |
Chemistry World June 24, 2013 Emma Stoye |
Miniature battery a first for 3D printing Researchers in the US have created a lithium-ion battery the size of a grain of sand, the first to be manufactured by 3D printing. |
IEEE Spectrum December 2008 Prachi Patel-Predd |
A Battery-Capacitor Hybrid for Hybrids Engineers give lead-acid batteries a makeover by crossing them with ultracapacitors. |
Chemistry World September 25, 2008 Simon Hadlington |
Graphene racks up the charge Researchers in the US have used graphene, sheets of carbon that are just one atom thick, to improve the performance of energy-storage devices which could supersede batteries in electric cars. |
Chemistry World October 10, 2013 Rowan Frame |
Molten air -- a new class of battery Scientists from the US have invented a new type of battery. The so-called 'molten air batteries' have among the highest electrical storage capacities of all battery types to date. |
Technology Research News March 26, 2003 |
On-chip battery debuts Researchers from Hosei University in Japan have taken a big step toward giving nano devices and biochips onboard power supplies. |
IEEE Spectrum March 2013 Philip E. Ross |
Boeing's Battery Blues Despite fires in the 787's lithium-ion batteries, planes will become more dependent on electricity and batteries |
Chemistry World September 19, 2007 Ned Stafford |
Electric Cars Hoping for Lithium Ion Revolution General Motors is betting that chemists are close to solving the plug-in hybrid electric vehicle puzzle, by developing rechargeable batteries that are safe, robust, long-lasting, and inexpensive. |
Technology Research News May 21, 2003 |
Magnesium batteries show mettle Researchers from Bar-Ilan University in Israel have developed rechargeable batteries made from magnesium, a cheap, abundant and relatively environmentally friendly metal. |
Chemistry World April 3, 2014 Jennifer Newton |
Nanoporous anodes charge up Scientists in China and the US say a new anode material they have created represents a significant step forward in the development of long-life stationary lithium-ion batteries for large-scale energy storage systems. |
IEEE Spectrum September 2007 John Voelcker |
Lithium Batteries Take to the Road Hybrid electric cars need much better batteries -- and A123, a plucky Massachusetts start-up, says it's got them. |
Technology Research News September 22, 2004 Kimberly Patch |
Fuel Cell Converts Waste to Power One problem with fuel cells is that they produce carbon monoxide, which can gum up the works. Researchers have found a way to use the carbon monoxide to produce more energy in a reaction that can take place at room temperature. |
IEEE Spectrum March 2009 Samuel K. Moore |
A Rapid-Recharge Lithium Battery MIT scientists tweak lithium formula to let battery discharge in seconds |
Chemistry World March 5, 2012 James Urquhart |
Simulating Your Way to a Better Supercapacitor Researchers have used computer simulations to elucidate how supercapacitors are able to store electric charge. |