Similar Articles |
|
Technology Research News August 11, 2004 Eric Smalley |
Chips measure electron spin Practical quantum computers are at least a decade away, and some researchers are betting that they will never be built. But a pair of recent experiments may prove them wrong. |
Technology Research News September 10, 2003 Eric Smalley |
Electron teams make bigger qubits Making quantum computers from electronic chips rather than cumbersome laboratory equipment requires control over individual electrons. A scheme that has a string of electrons acting as one could ease the task by expanding the target to a whopping 250 millionths of a millimeter. |
Technology Research News November 3, 2004 Eric Smalley |
Single Field Shapes Quantum Bits Researchers have recently realized that it may be possible to control the electrons in a quantum computer using a single magnetic field rather than having to produce extremely small, precisely focused magnetic fields for each electron. |
Technology Research News February 23, 2005 |
Light writes data in electrons Researchers developed a spin memory device that writes data as electron spins using lasers, stores the electrons in quantum dots, and reads spin information by applying a voltage to the quantum dots to generate photons. |
Technology Research News August 13, 2003 Eric Smalley |
Quantum computer keeps it simple Controlling fleeting quantum particles usually requires making extraordinarily precise devices. A proposal that calls for chaperoning pairs of particles and getting all of the particles in a quantum computer to sing the same tune could ease this burden. |
IEEE Spectrum August 2007 Stick et al. |
The Trap Technique In this first part of a two-part series, the authors discuss how today's computers are running out of room for classical physics to work and how working with the quantum nature of things instead of against it will open up vast new frontiers for computing. |
Technology Research News January 1, 2003 Eric Smalley |
Electron pairs power quantum plan Researchers from HP Laboratories and Qinetiq plc in England have mapped out a way to manipulate a pair of very cold electrons that could eventually lead to practical quantum computers made from quantum dots, or tiny specks of the type of semiconductor material used in electronics. |
IEEE Spectrum December 2007 Sarah Adee |
Scientists Start Quest for the Silicon Quantum Computer Sandia research could link silicon circuits to quantum computers. |
Technology Research News December 15, 2004 |
Scheme Simplifies Quantum Chips Researchers have brought practical quantum computers a step closer by proposing a type of quantum bit that is relatively easy to build. |
Technology Research News December 19, 2005 |
Quantum computing: qubits Quantum bits, or qubits, are the quantum equivalent of the transistors that make up today's computers. There are four established qubit candidates: ion traps, quantum dots, semiconductor impurities, and superconducting circuits. |
Technology Research News December 11, 2002 Eric Smalley |
Design links quantum bits Realizing the potential of phenomenally fast quantum computers means having to link thousands of quantum bits, which are the transistors of such computers. So far researchers have been able to connect only a few. A scheme for linking many tiny superconducting loops may pull it all together. |
Industrial Physicist Aug/Sep 2004 Eric J. Lerner |
News: Plasmon microscopy A new technique allows far-field optical microscopy with resolutions well below the wavelength of light. |
Technology Research News June 1, 2005 |
Magnetic Resonance Goes Nano Researchers have built a nuclear magnetic resonance device that has the potential to overcome the quantum bit limit because it is small enough to fit on a computer chip. |
Wired September 2001 Mark K. Anderson |
Liquid Logic Say good-bye to the either-or binary digit. Quantum computing is riding a new wave of supercool subatomic bits that can be both 1 and 0 at once... |
Technology Research News April 7, 2004 Eric Smalley |
Sturdy quantum computing demoed The atomic or subatomic components of prototype quantum computers usually have to be carefully sheltered from the environment, but a method that makes qubits immune to noise shows promise. |
IEEE Spectrum November 2010 Bedair et al. |
Spintronic Memories to Revolutionize Data Storage Superdense MRAM chips based on the bizarre property of electron spin could replace all other forms of data storage |
IEEE Spectrum July 2011 Joel E. Moore |
Topological Insulators Quantum magic can make strange but useful semiconductors that are insulators on the inside and conductors on the surface |
Technology Research News January 29, 2003 Eric Smalley |
Quantum computers go digital One of the challenges of building a quantum computer is reducing errors. Researchers from the University of Wisconsin at Madison have eased the problem with a method that reduces error rates by two orders of magnitude. |
IEEE Spectrum March 2011 Saswato R. Das |
A Crowd of Quantum Entanglements Phosphorus-in-silicon system could lead to quantum computers |
Technology Research News February 26, 2003 Eric Smalley |
Quantum computing catches the bus National Institute of Standards and Technology (NIST) researchers have tapped an aspect of classical computers and a pair of weird particle traits to allow distant particles, or qubits, to communicate as though they were in contact. |
Wired October 2001 Wil McCarthy |
Ultimate Alchemy Research into artificial atoms could lead to one startling endpoint: programmable matter that changes its makeup at the flip of a switch... |
Technology Research News March 12, 2003 Eric Smalley |
Quantum chips advance Researchers have entangled a pair of electronic qubits in an integrated circuit. The work is a milestone on the road to chip-based, mind-bogglingly fast quantum computers. |
Technology Research News January 14, 2004 Eric Smalley |
Quantum dice debut Researchers have overcome a major obstacle to generating random numbers on quantum computers by limiting the possibilities in the otherwise unlimited randomness of a set of quantum particles. |
Chemistry World October 1, 2014 Philip Ball |
Probing molecules atom by atom A new technique that can 'see' individual spins of electrons and nuclei in single molecules could enable nuclear magnetic resonance spectroscopy atom by atom. |
Technology Research News December 29, 2004 |
Atom Demo Fixes Quantum Errors Researchers have demonstrated a way to correct errors in qubits of beryllium ions held in an electromagnetic trap. |
Scientific American October 17, 2005 Graham P. Collins |
Quantum Bug Physicists must overcome a fundamental obstacle before quantum computers can become a practical reality: decoherence, which is the loss of the very quantum properties that such computers would rely on. |
Industrial Physicist Feb/Mar 2003 Jennifer Oullette |
Quantum dots for sale Artificial atoms illluminate biotechnology and other fields |
Technology Research News May 21, 2003 |
Big qubits linked over distance Researchers working on quantum computing managed to entangle a pair of large quantum bits that were spaced nearly a millimeter apart. |
IEEE Spectrum February 2012 Sung & Lee |
Graphene: The Ultimate Switch Graphene could replace the transistor with switches that steer electrons just like beams of light |
Technology Research News July 28, 2004 |
Particle chains make quantum wires The method is a step toward building quantum computers, which have the potential to solve certain types of very large problems. |
IEEE Spectrum January 2010 Erico Guizzo |
Loser: D-Wave Does Not Quantum Compute D-Wave Systems' quantum computers look to be bigger, costlier, and slower than conventional ones |
Chemistry World July 12, 2011 Kate McAlpine |
Bit Part for Diethylfluoromalonate in Reaction Model A quantum simulation has successfully described the progression of a chemical reaction for the first time. |
Chemistry World September 18, 2007 Simon Hadlington |
Researchers See Electrons in a Spin Scientists in the US have successfully measured the spin polarisation state of single atoms adsorbed to a surface, bringing the prospect of quantum computing and spin-based electronics (spintronics) a step closer. |
Technology Research News January 14, 2004 |
Atoms make quantum coprocessor Researchers from Brussels Free University in Belgium (ULB) and the Niels Bohr Institute in Denmark have shown that the collective spin of clouds of atoms can be used to compute. |
IEEE Spectrum January 2007 Elizabeth Svoboda |
Fresh Spin On Logic In the last few years, a new type of memory has begun to penetrate the market for nonvolatile data storage. In addition to being much faster, spintronics processors could be much smaller than present-day processors. |
Technology Research News September 10, 2003 |
Light drives electron logic Building a quantum computer is extremely difficult, and working models are at least one to two decades away. Researchers have taken the proposition a step forward by demonstrating a conditional logic gate made from a pair of electrons trapped in a quantum dot. |
IEEE Spectrum February 2013 Rachel Courtland |
Graphene Goes the Distance in Spintronics Experiments push electron-spin signals to record lengths |
Technology Research News April 21, 2004 Eric Smalley |
Optical Quantum Memory Designed Quantum computers that use photons rather than atoms or electrons are appealing because the equipment needed to handle them can be relatively simple. A scheme for trapping photons in fiber-optic loops and replacing the photons that the loops absorb could be the answer. |
Technology Research News August 25, 2004 Eric Smalley |
Five Photons Linked Researchers have entangled five photons - a key step in quantum computing which would make it possible to check computations for errors and teleport quantum information within and between computers. |
Scientific American March 6, 2006 Graham P. Collins |
Ion Power In their quest to build a computer that would take advantage of quantum mechanics, physicists are pursuing a number of disparate technologies. Teams working with trapped atomic ions have demonstrated several landmark feats that the other approaches will be hard-pressed to match. |
Industrial Physicist Eric J. Lerner |
News Briefs Detecting a Single Spin... Handheld Chem Lab... Superprisms... Growing Nanotrees... |
Chemistry World November 21, 2014 Simon Hadlington |
Magnetic resonance taken to the limit Researchers in the US have taken magnetic resonance imaging to its extreme by developing a technique to detect the spin of a single nucleus. |
IEEE Spectrum February 2010 Edward H. Sargent |
Infrared Optoelectronics You Can Apply With a Brush Infrared quantum dots will lead to cheaper photovoltaic cells. When the fabrication of optoelectronic devices becomes almost as easy as splashing paint on a canvas, our assumptions about the high cost of high-performance optoelectronic devices will be turned on its head. |
Technology Research News April 6, 2005 |
Optics Demo Does Quantum Logic Researchers from the University of Science and Technology of China and the University of Heidelberg in Germany have demonstrated a method of using four photons to form a logic gate that can be used for quantum computing. |
Technology Research News November 17, 2004 |
Atom Flip Energy Measured Scientists have measured the energy required to flip the magnetic orientation, or spin of a single atom trapped on a surface. |
IEEE Spectrum September 2008 Joshua J. Romero |
Physicist Named MacArthur Fellow for Work on Quantum Computing Alexei Kitaev's theoretical studies may lead the way to quantum computers that catch their own errors |
Technology Research News February 11, 2004 |
Electricity teleportation devised Researchers from Leiden University in the Netherlands have devised a way to teleport electricity. |
Technology Research News November 5, 2003 |
Electrons spin magnetic fields Spintronics researchers are looking for ways to control and use electron spin. Researchers from Cornell University and Yale University have brought the field a step forward by showing that a flow of electrons that all have the same spin can transfer angular momentum to magnetic material. |
Chemistry World November 27, 2006 Simon Hadlington |
Getting the Dope on a Single Atom of Dopant Scientists have successfully probed the electronic and quantum mechanical properties of a single atom of dopant in a silicon transistor. The research could provide important information necessary for the development of quantum computers. |
Technology Research News February 12, 2003 Eric Smalley |
Logic scheme gains power Researchers from the University of Notre Dame have pushed an alternative computer chip architecture a step forward by finding a way to refresh the short-lived signals the scheme uses to represent the 1s and 0s of digital information. |